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Abstract 
This article reports part of a case study which investigated errors that 

occurred in a Mathematics classroom owing to poor conceptualisation of 

mathematical concepts and a lack of the required mathematical register 

among a group of thirty first year university students.  The study focused on 

the critical issue of making sense of mathematical concepts and examined 

this issue by exploring students’ interpretations and misinterpretations in their 

learning of mathematical differentiation.  The students were registered for 

Mathematics 1 in Chemical Engineering.  Data was derived from the 

students’ written work, along with video-recorded material of their ‘live’ 

learning interactions. This data was then analysed within the framework of 

Sfard’s (2007) Commognitive approach as a means of attempting to address 

errors that are displayed by students when learning differentiation. The 

students demonstrated different types of difficulties, namely, conceptual, 

interpretation, procedural, linear extrapolation and arbitrary errors.  The 

application of the Commognitive approach to the identification and 

addressing of students’ errors to advance their understanding of 

differentiation has proven to be positive in enhancing student learning and 

success. 

 

Keywords: Commognitive framework; mathematical discourse; students’ 

errors; students’ understanding; success in mathematics 
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Introduction  
Students’ understanding of mathematics causes uneasiness among teachers, 

lecturers and other interested parties (Siyepu 2013a).  It is somewhat difficult 

to predict the causes of difficulties that make several, primarily English 

Second Language (ESL) students, fail or not understand mathematics.  

Several researchers have devoted time to investigate issues that relate to poor 

performance of students in mathematics (for example, Vale, Murray & 

Brown 2012).  Vale et al. (2012) point out that, ‘English second language 

students face an additional challenge in their National Curriculum Vocational 

(NCV) studies, namely that of learning and being assessed in a language 

other than home language’.  This problem is exacerbated by the fact that the 

majority of South African students study mathematics in English; and most 

institutions of higher learning have English as their medium of instruction.  

 Apart from the problem of English Second Language (ESL) 

impacting negatively on the general performance of students, the language of 

mathematics is also viewed as problematic for many.  In line with this view, 

Dempster and Reddy (2007) advance a convincing argument when 

suggesting that, learning of scientific subjects (Mathematics included) 

requires students’ proficiency in both (i) language of mathematics and the (ii) 

language of instruction.  In this respect, Jawahar and Dempster (2013:1429) 

submit that ESL students tend to be faced by an additional challenge, as they 

tend not to be in a position to master both the former and the latter.  

Arguably, English as the medium of instruction (in this case) mediates the 

comprehension and comprehensibility of the language of mathematics and, as 

such, one senses that the language of mathematics and the language of 

instruction may not be mutually exclusive, particularly in an environment 

where English is the medium of instruction.  Put differently, mastery of 

English is, in some sense, a prerequisite for understanding and making sense 

of the language of mathematics. Mathematical discourse is a concern of this 

paper.  This discourse consists of rules, symbols and formulae, some of 

which are derived from foreign languages.  As a result of that, students tend 

to demonstrate poor interpretation of symbols in their calculations of 

mathematical problems (Siyepu, 2013b).  Cangelosi et al. (2013:71) point out 

that students memorise algebraic rules with no conceptual understanding 

attached to these concepts in a mathematics discourse.  They (2013) also note 

that many students have difficulty keeping track of and applying the rules 
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appropriately; and they (2013) add that students often misinterpret 
29−  as 

equal
2)9(− not

2)9(− .  For example, some students interpret 
32−
as

312  

instead of
3

2

1
. The point being made is that an under-developed conception of 

additive and multiplicative inverse is at the root of these errors; and it is for 

that reason, among others, that the language used and the difficulty in 

interpreting notation and grouping may hinder students’ progression (ibid).  

 The study of calculus, with its fundamental concepts, requires 

students to interpret mathematical signs, symbols and rules appropriately 

(Gray et al. 2009).  Students’ difficulties in the learning of calculus are well 

documented; but there seems to be scanty research (to the best of our 

knowledge) that focuses on making sense of symbols, rules and formulae in a 

calculus classroom.  The inadequate interpretation, or misinterpretation, of 

symbols results in the failure of students to establish the interconnectedness 

of their existing mathematical knowledge with the new knowledge to be 

acquired; and this tends to have some negative implications for their success. 

This article explores students’ interpretations of symbols, rules and formulae 

in a calculus classroom in their learning of differentiation in their first year in 

a university classroom.  The primary purpose of this study was to explore and 

understand how students interpret symbols, rules and formulae as they 

attempt to attach meaning to and make sense of mathematical discourse.  The 

intention was to gain this understanding through identifying students’ errors 

in their written text and classroom interactions.  Attention was also paid to 

addressing the identified errors in classroom discussion, with a view to 

improving students’ understanding and, ultimately, their success. 

 This study sought to reveal errors displayed by students registered for 

mathematics in their learning of differentiation in their 1
st
 year level in a 

university classroom. Explicitly, this study sought to answer questions such 

as:  

 

1. What are errors displayed by students registered for mathematics in their 

learning of differentiation? 

 

2. What strategies that are used by the lecturer to eliminate students’ errors in 

their learning of differentiation? 
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3. How do these strategies improve learners’ understanding of 

differentiation?    

 

 

Theoretical Framework     
This study is based on Sfard’s (2007) Commognitive framework.  Within this 

framework, thinking is defined as an individualisation of interpersonal 

communication, although not necessarily verbal.  To emphasise the unity of 

cognitive processes and communication, the word commognition, a 

combination of the two (that is, cognitive processes and communication), is 

used to name the framework.  The Commognitive framework is an analytical 

framework of the communicational approach to cognition, which could be 

perceived as including both cognitive and socio-cultural approaches. These 

approaches view learning as a process of becoming a participant in a certain 

distinct discourse.  Discourse is considered a special type of communication, 

made distinct by its repertoire of admissible actions and the way these actions 

are paired with re-actions. Sfard (2001:28) asserts that the concept of 

discourse refers to any specific act of communication, ‘whether diachronic or 

synchronic, whether with others or with oneself, whether predominantly 

verbal or with the help of other symbolic systems’.  Sfard (2007:573) adds: 

‘…the different types of communication that bring some people together 

while excluding some others are called discourses’.  She further explains that 

a discourse counts as mathematical if it features mathematical words, such as 

those related to quantities and shapes. This study deals with calculus, 

focusing on students’ interpretations of calculus concepts and their notations, 

symbols and rules.  

Sfard (2007:568) makes the following claim: 

 

          If an interpretive framework is to pass the test, studies guided by this 

framework must be able to cope with the following issues: 
 

(i) Focus on the object of learning: In the case under study, what kind 

of change is supposed to occur as a result of learning? 
 

(ii) Focus on the process: How do the students and the lecturer work 

towards this change? 
 

(iii) Focus on the outcome: Has the expected change occurred?  
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Due to the concern   of educationists and researchers about students’ 

difficulties   learning mathematical concepts, a shift from acquisitionist to 

participationist emerged.  Sfard (2007:570) asserts that ‘the participationist 

account comes to the rescue not only by offering a different answer to the 

question of how humans develop, but also by altering the conception of what 

it is that develops’. In a Commognitive approach, Sfard (2007:573) states 

that, ‘in any academic discipline such as mathematics a form of discourse 

made distinct by four characteristics may be considered’.  These comprise (a) 

words and their uses; (b) visual mediators; (c) endorsed narratives; and (d) 

routines, as detailed below.  

 

Words and their uses: In any professional discourse, there are words and 

their uses that comprise the unique vocabulary of that particular discipline.  

Mathematics has its own language.  It shares words with ordinary English but 

these have a different meaning in the context of mathematics.  Mathematics 

‘register’ is defined as the meanings belonging to the natural language used in 

mathematics (Cuevas 1984).  Halliday (1975) asserts that a mathematics 

register has the following components: 

 

(i) Natural language words reinterpreted in the context of mathematics, 

such as functions, root, derivative, product, chain, composite and 

differentiation. 

(ii) Locutions, such as the square on the hypotenuse and least common 

multiple. 

(iii) Terms formed from the combining elements of Greek and Latin 

words, such as parabola, denominator, coefficient and asymptotic.  

 

In addition to vocabulary, a mathematics register also includes styles of 

meaning and ways of presenting arguments within the context of 

mathematics. In a calculus classroom, special words or concepts with their 

notations or symbols should be introduced with care to distinguish between 

their meaning in everyday English and in a mathematics context.   

 

Visual mediators are the means by which participants of discourses identify 

the object of their talk and coordinate their communication.  Mathematical 

discourses often involve symbolic artefacts, created specifically for the sake 

of a particular form of communication.  The most common examples include 
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mathematical notations, symbols, rules and formulae.  In order to flesh out 

this notion, the following mathematical notations, symbols, rules and 

formulae are worthy of note. 

(a) 
h

xfhxf
xf

h

)()(
lim)(

0

−+
=′

→

 

(b) Power Rule is described by the equation below: 
1)( −

=
nn nxx

dx

d
 for n  is 

equal to any constant.   

(c) Constant Rule: 0)( =c
dx

d
.  The derivative of a constant is zero. 

(d)  Constant Multiple Rule: The derivative of a constant multiplied by a 

function is the constant multiplied by the derivative of the original 

function: ))(())(( xf
dx

d
axfa

dx

d
⋅=⋅  

(e) Sum/Difference Rules: The derivative of the sum of two functions is the 

sum of the derivatives of the two functions: 

)]([)]([)]()([ xg
dx

d
xf

dx

d
xgxf

dx

d
+=+

 
(f) Product Rule: The derivative of the product of two functions is described 

by the equation here 

))(()())(()())()(( xf
dx

d
xgxg

dx

d
xfxgxf

dx

d
⋅+⋅=⋅

 
 

(g) Quotient Rule: The derivative of the quotient of two functions is 

described by the equation here 









)(

)(

xg

xf

dx

d

=

2
))((

)()()())((

xg

xg
dx

d
xfxgxf

dx

d
−⋅

 
(h)  Chain Rule: The chain rule is used to differentiate composite functions. 

As such, it is a vital tool for differentiating most functions of a certain 

complexity.  
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It states: )())(()))((( xgxgfxgf
dx

d
′⋅′= . 

(i) Differentiation of exponential functions: The derivative of 
x

by = is  

 

given by xb
dx

d x ln=  

 

(j) Logarithmic differentiation provides a way to differentiate functions 

such as
x

xy = ;
)(ex

xy = ; 
3

)(sin x
xy = and

)( )
4

( x
xxy = .  These functions 

require expert algebra skills and careful use of the following unpopular, but 

well-known, properties of logarithms.  Though the following properties and 

methods are true for a logarithm of any base, only the natural logarithm (base

e , where .....718281828,2≈e ) are considered.  Notably, this study uses the 

natural logarithm (ln)
 

and thus
 

students’ understanding of logarithmic 

differentiation requires them to master the following properties of natural 

logarithms.  

 

(a) 1ln =e   

(b) xe
x

=ln   

(c) yxy
x lnln =  

(d) yxxy lnln)ln( +=   

(e) yx
y

x
lnlnln −=








 

 

All of the above mathematical formulae, rules, symbols and notations are the 

basic requirements for any student in order to develop interconnectedness of 

differentiation.  

 

Endorsed narratives are facts and ideas that are true in conventional 

mathematical knowledge.  These entail definitions, axioms, theorems and 

formulae.  In the case of mathematical discourse, the consensually endorsed 

narratives are known as mathematical theories, which include the rules and 
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formulae discussed above in relation to visual mediation (Sfard 2007).  

Making sense of rules, notations and formulae that are applicable in a 

calculus classroom is considered part of this study. 

 

Routines are procedures that are applied as repeated steps to reach a solution 

in a mathematical problem.  Routines are helpful in learning a new discourse, 

as our ability to act in new situations often depends on recalling one’s or 

others’ past experiences (Tabach & Nachlieli 2011). An example of a routine 

in calculus is the application of the first principle of differentiation to find the 

derivative 
h

xfhxf
xf

h

)()(
lim)(

0

−+
=′

→

 . 

 

 

 

Literature Review 
Students’ understanding of mathematics remains a problem, despite several 

attempts by teachers, lecturers and researchers to develop viable strategies 

that could be applied in the classroom to enable students to improve their 

performance.  The language of mathematics is regarded as the main cause of 

this inadequate understanding.  Students’ tendency to make errors when 

learning mathematics seems to be related to their poor interpretation of 

concepts.  Students’ displayed errors are based on these factors: over-

generalisation; ignorance of rule restrictions; incomplete application of rules; 

and misinterpretation of concepts (Cuevas 1984).  

 

 

Mathematical Discourse   
Adler (2001) outlines language scenarios that are relevant to the South 

African situation, with specific reference to the language culture in a 

Mathematics classroom.  Firstly, in the urban-suburban areas where there is a 

strong English environment, many different main languages are found.  

Secondly, in urban or township contexts, there is less English in the 

environment, with the presence of a strong regional language and different 

indigenous languages.  Thirdly, there are foreign language situations where 

the learners mainly hear English at school but most of the learners use the 

same main language, i.e. not English.  The two latter scenarios seem to have a 
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direct bearing on the current study, because a reasonable number of students 

who participated in the study hail from the townships of the Western Cape, 

whereas all others originate from the deep rural areas of the Eastern Cape.  

As pointed out earlier in the discussion, in South Africa, English is used as 

the language of instruction from the middle level of schooling to tertiary 

level.  Subjects such as Mathematics are taught to students, the majority of 

whom have limited English proficiency.  These students struggle to 

understand Mathematics lessons owing to, amongst other factors, poor 

everyday English vocabulary and a poor understanding of mathematical 

discourse.   

 English language speakers select their vocabulary to convey meaning 

in a particular context.  This also applies within the discourse of mathematics, 

where mathematical concepts have special meanings.  Cuevas (1984:137) 

asserts that ‘mathematical concepts are viewed as the result of the students’ 

experience, with language facilitating the students’ conceptual development 

through discussion and instruction’.  He further elaborates that language is 

applied to the content of mathematics in the representation of experience 

through mathematical notation.  The use of signs, symbols, rules and 

formulae in mathematics confuses students, as they struggle to access the 

meaning of this terminology.  

 The main task for Mathematics lecturers is to help students to make 

sense of all these mathematical statements.  This may be done by means of 

semiotic activity.  Semiotic activity is defined as the activity of investigating 

the relationship between sign and meaning, as well as improving the existing 

relationship between sign and meaning (Van Oers 1997).  This suggests that 

lecturers should focus on making meaning of mathematical vocabulary and 

procedures in their teaching of mathematics. 

 

 
Communication in a Mathematics Classroom  
The poor performance of students in Mathematics is perhaps owing to 

lecturers’ teaching approaches in Mathematics classrooms.  Studies show that 

instruction remains lecturer-centred, with greater emphasis placed on 

lecturing than on helping students to think critically and apply their 

knowledge to real-world situations (Cobb et al. 1992).  Several researchers 

propose the development of an inquiry-based form of mathematics 
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instruction.  In an inquiry-based environment, learning is viewed as an active, 

constructive activity in which students are encouraged to explore, develop 

conjectures and solve problems (Wachira et al. 2013).  Students are 

encouraged to discuss and communicate their ideas and results, often within 

small, cooperative groups, as well as with their lecturers.  The National 

Council of Teachers of Mathematics (2000) suggests that instruction should 

provide students with opportunities to engage in mathematical inquiry and 

meaning-making through discourse; and lecturers should encourage this 

process by remaining flexible and responsive to students’ response and 

feedback. 

 Wachira, Pourdavood & Skitzki (2013:2) claim that ‘a crucial aspect 

of a classroom in which students are actively engaged, is to focus on 

classroom discourse’.  They define discourse as purposeful talk on a 

mathematics subject in which there are contributions and interactions that 

unpack mathematical concepts among students.  They elaborate that 

discourse does not only promote the development of shared understandings 

and new insights, but also contributes to deeper analyses of mathematics by 

the lecturers.  They claim that a key element of discourse is the need to use 

mathematics language and articulate mathematics concepts in order to learn 

both the language and the concepts.  This study employs high discourse 

classrooms.  Imm and Stylianou (2012:131) relate to this notion when 

pointing out that in high discourse classrooms lecturers prioritise exchange of 

ideas among the students, and the exchange of ideas should be a purposeful 

mathematical conversation.  

 Communication is important in developing mathematical 

understanding (Steele 2001). Steele (2001) explains that, within a socio-

cultural perspective, students exchange ideas with one another and listen 

actively to one another’s views.  This creates mutual understanding based on 

culturally established mathematical practices.  Ryve, Nilsson and Pettersson 

(2013) suggest that students need to enter each other’s universe of thought in 

classroom interaction.  Communication should be effective: it is effective if it 

assists students to gain insight into what is being discussed about a particular 

topic being studied.  In a high discourse Mathematics classroom, students are 

assigned tasks to calculate and communicate their thinking with others.  In 

this way, students express their understanding and interpretation of their 

mathematical tasks.  The next section discusses students’ difficulties in 

learning calculus. 
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Students’ Conceptual Difficulties in Understanding Calculus 
Making sense of mathematics gives students pleasure, confidence and a 

willingness to tackle new problems (Tall, 2013).  He (2013) also notes that 

the long-term growth of mathematical thinking is improved for those who 

have a ‘sense of relationships’ that guides their thinking.  Additionally, for 

students to develop an understanding of mathematics, there should be a 

sensible approach that takes account of the structures and increasing levels of 

sophistication involved as learning progresses from sense through perception, 

then through the relationships of operations and a developing sense of 

reasoning (Tall, 2013).  In other words, students should be able to connect 

meanings of symbols, rules and formulae in their learning of differential 

calculus. 

Some students’ understanding of calculus is hindered by their lack of 

ability to make sense of calculus concepts (White & Mitchelmore 1996).  

Sfard (2008:111) defines a concept as ‘a symbol together with its uses’.  

White and Mitchelmore (1996) argue that the main inhibiting factor to 

success in calculus seems to be an underdeveloped concept of a variable. 

Consequently, students suffer from a manipulation focus where they base 

decisions about which procedures to apply to the given symbols and ignore 

the meaning behind the symbols.  They (1996) argue that being able to 

symbolise derivatives involves forming relationships between concepts and 

should therefore be indicative of conceptual knowledge. 

Tall (1993:2) claims that, ‘whichever way the calculus is approached, 

there seem to be difficult concepts which seem to cause problems no matter 

how they are taught’. , He continues to argue that, ‘when students meet 

difficulties, a dominant strategy for coping is to concentrate on the procedural 

aspects that are usually set in set examinations’ (Tall 1993:4).  He provides a 

list of examples of difficulties with calculus that are normally displayed by 

students (Tall 1993:6): 

 

• Leibniz notation 
dx

dy
proves to be almost indispensable in calculus, yet it 

causes serious conceptual problems.  Students fail to understand whether 

dx

dy
is a fraction or a single symbol.  In the same vein, students fail to 
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understand the relationship between the dx in 
dx

dy
and the dx in

∫ dxxf )( .  Another query he raises is, ‘can the du  be cancelled in the 

equation
dx

du

du

dy

dx

dy
= ?’ 

 

• Difficulties in selecting and using appropriate representations are 

known to be widespread.  
 

• Algebraic manipulation is the preferred mode of operation for many 

students.  Students who take calculus with little knowledge of 

manipulating polynomials and trigonometric formulae tend to 

experience difficulties in simplification processes in solutions of 

differentiation.  

 

 

Research Design and Methodology  
This is a qualitative case study located within the interpretive paradigm.  

Shank (2002:5) defines qualitative research as ‘a form of organised empirical 

inquiry into meaning’.  Denzin and Lincoln (2000:3) further maintain that 

qualitative research involves an interpretive and naturalistic approach and 

thus ‘…qualitative researchers study things in their natural settings, 

attempting to make sense of or to interpret, phenomena in terms of the 

meanings people bring to them’.  This study focuses on making sense of 

mathematical discourse with the intention of developing meaning and 

understanding the concept of differentiation among the first year students.  

The purpose is to attempt to find viable solutions to student difficulties in 

learning of differentiation in a calculus classroom and improve their success.  

This study reports on implications of using mathematical classroom discourse 

during social interactions to unpack calculus concepts. 

 

 

Case Study  
This study adopts a case study design approach.  A case study is an empirical 

inquiry that investigates a phenomenon within its real life context (Yin 2009).  
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Merriam (1988) defines a qualitative case study as an intensive, holistic 

description and analysis of a single entity.  Case studies are particularistic, 

which means that a case study focuses on a particular situation.  They rely 

heavily on inductive reasoning in handling multiple data sources.  

 
 

Research Participants  
The research participants were thirty students who enrolled for Chemical 

Engineering for first semester level in an Extended Curriculum Programme 

(ECP) during the 2009 academic year.  They were borderline cases, meaning 

that they did not necessarily meet the minimum requirements for entry into 

the main engineering stream.  

 
 

Data Collection 
The data set for this study was collected from students’ written work, and 

from audio and video recordings.  The latter offer the advantage of dense, 

authentic data.  In a case study approach, researchers seek to study 

participants in real situations, doing real activities.  To substantiate this view, 

DuFon (2002:43) argues that: Audio and video recordings can provide 

researchers and other interested parties with more contextual data.  Further 

they give a complete sense of who the participants are, and acquaint people 

with the setting in which the participants function and the type of activities 

they engage in, and the nature of these activities. Audio and video recordings 

are permanent; they allow researchers and other interested parties to 

experience an event repeatedly by listening to and viewing these recordings 

as many times as necessary.  Replaying an event allows researchers more 

time to reflect on the data before drawing conclusions.  The audio and video 

recordings supported the data collection process through bringing a high level 

of detail regarding the interactions between the researcher and students 

(Pelling & Renard 1999). 

 In this study, students and the researchers gathered in a lecture room 

so that the students could demonstrate their interpretations of calculus 

activities.  They shared their understanding and interpretations to reach 

consensus about the correct interpretation of rules and symbols to make sense 

of their learning of differentiation.  Figure 1 below shows activities which the 

participants discussed. 
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Question 1 

Differentiate the following functions and leave your answer in simplest 

form.   

1.1 
x

x
y

tan

sec 23

=  

1.2 )97ln(3 52
−=

+
xy

x
 

 

Question 2 

Differentiate the following functions implicitly and leave your answer in 

simplest form.   

2.1 )ln( 22
yxyx +=+  

2.2 
yxxy

eeee +=−
+

 
 

Question 3 

Find the derivatives of the following functions and simplify where possible 

3.1 xexy
x

cos
323 +

=  

3.2
xxey

2tan2sec −
=  

Figure 1: The test given to the students  

 

 

Data Analysis 
Data analysis was conducted in multiple stages.  Upon completion of 

marking students’ written tests, the lecturer carried out item-by-item analysis 

by examining students’ responses for each item.  The students’ scripts were 

sorted and the scripts that displayed similar errors were grouped.  

 Audio and video recordings from the classroom lessons were 

transcribed.  The focus was on errors displayed by the students in their 

calculations on a whiteboard.   

 The data analysis also focused on the classroom interactions and 

exchange of ideas among the students and the lecturer.  Data analysis 

revealed that some students misinterpret rules and symbols in their use of 

differentiation rules. During mathematical discourse in the classroom, this 

misinterpretation drew the attention of both the lecturer and the students. 
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Classroom interactions and exchange of ideas involves students and lecturers’ 

evoking one another’s understanding of differentiation concepts as students 

explain their thinking in the process of calculation.  

 

 

Discussion of Results  
This study considered student errors in line with the conceptual framework 

discussed below: 

 

• Conceptual errors, according to Kiat (2005), are evident in a failure 

to grasp the concepts in a problem and a failure to appreciate the relationships 

in a problem. From a Commognitive stance, conceptual errors are connected 

with poor understanding of words and their uses.   
 

• Interpretation errors, according to Olivier (1989), occur when 

students wrongly interpret a concept due to over-generalisation of the existing 

schema. From a Commognitive point, interpretation errors are interconnected 

with poor understanding of words and their uses. To be exact, students might 

know mathematical formulae but unable to apply them appropriately.     
 

• Linear extrapolation errors occur when students over-generalise the 

property f (a + b) = f (a) + f (b), which applies only when f is a linear 

function, to the form f (a *b) = f (a) * f (b), where f is any function and * any 

operation (Matz, 1980). From a Commognitive standpoint, linear 

extrapolation errors are related narratives as students fail to understand the 

restrictions of the rules.   
 

• Procedural errors, according to Kiat (2005), occur when students fail 

to carry out manipulations or algorithms, although concepts are understood. 

From a Commognitive position, procedural errors are related to routines 

where students fail to follow repetitive patterns in interlocutors’ actions.  
 

• Arbitrary errors, according to Orton (1983), occur when students 

behave illogically and fail to take account of the constraints laid down in 

what was given. A commognitive justification is where students have poor 

visual mediators. In the case of differentiation where students do not know 

the appropriate formulae to be applied.     
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The discussion of results is an attempt to reveal errors displayed by 

students in their written work.  An explanation on how the errors displayed 

was addressed in classroom discussion.  Of particular interest and importance 

was the students’ improvement that seemed to take place as a result of this 

teaching and learning initiative.  

 

 

Conceptual Errors Displayed by Students  
Conceptual errors occur owing to a failure to grasp the concepts involved in 

the problem, or failure to appreciate the relationships involved in the 

problem.  

 

Table 1 shows a conceptual error and its description in an exponential 

logarithmic function 

Type of error Description 

Conceptual errors Conceptual errors occur owing to a failure to grasp the 

concepts involved in the problem or failure to 

appreciate the relationships involved in the problem. 

For example, it did not occur to some students that 

1ln =e  

 

In activities attempted by eight students, the students did not register that 

1ln =e , hence they applied the product rule to differentiate ex lntan2
.  

They also could not see the relationship of the concept of a natural 

logarithm ( )ln x
 
and the cosine function given in the problem 3.1. Hence 

they differentiated xcosln
2

1
as 

x

x

xx
cos

sin
2

1

sincosln
2

1
−

+−⋅ .  One 

student could not see that 2

1

2

1

cos)(coscos xxx ≠= , and she 

differentiated xcosln  incorrectly.  For example, her solution was as 

follows: 

 )cos(ln x
dx

d
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=
1

cosx
⋅ (−sinx).  

 

Two students showed errors of simplification of trigonometric functions, as 

they did not apply the Lowest Common Denominator (LCD) correctly.   

One student showed errors in differentiation of trigonometric functions 

when incorporated with logarithmic functions.  His solution indicated that 

he could not distinguish between the power rule and the logarithmic 

differentiation.  He differentiated 
3ln x as 

2ln3 x instead of
x

3
.  He wrote 

that the derivative of 
32ln +

=
x

ey is 1ln32 ⋅+= ex
dx

dy
.  

Students also differentiated xy cosln= as 
1

sin

cos2

1 x

x

−
⋅ instead of

x
xx

sin
cos2

1

cos

1
−⋅ . One student did not substitute 

x

x

cos2

sin−
with

2

tan x−
.  This indicates poor understanding of trigonometric identities.  

One student differentiated the following function as: xy
2secln=  

xxxx
x

x tansecln2tansec
sec

1
secln2 =⋅⋅=  instead of writing 

x
2secln  as xsecln2  first and then differentiating xsecln2  as

xxx
x

tan2tansec
sec

1
2 =⋅⋅ . 

 

Another student showed a poor understanding of the chain rule as she 

differentiated x
2secln  as xxxx tansecsec2secln 2

⋅⋅ .  She also 

differentiated x2tan−  as )2tan(sec2
xx −

, 
instead of

xx
22 sec22sec −=⋅− . 

Another student differentiated 
x

ex
2tan2 lnsecln −

+  incorrectly, as she  
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wrote that exxecxx
xy

y
ln)tan(tancossec2

sec

1 2

2
−+⋅⋅=

′

 

is the 

derivative of 
x

ex
2tan2 lnsecln −

+ .  

        
This solution indicated that this student did not know that the derivative of 

xsec  is xx tansec .  

A student wrote 
xsin

1

 
as the derivative of xsec ; another student wrote 

xsec  as the derivative of xtan , while yet another student differentiated 

x
2tan−  as xx

2sectan2 −⋅− .  The error is to write a minus sign in front 

of x
2sec .   

A student showed a poor understanding of the chain rule as they 

differentiated x
2tan−  as xx

22 sectan−  instead of xx
2sectan2− .  Yet 

another student wrote that the derivative of x
2sec is xec

2cos− .  

Another student wrote that the derivative of x
2tan−  is

xxx
22 sectan2tan ⋅− .  One student wrote that the derivative of xtan is

xcot .  Two students wrote that the derivative of x
2tan−  is

xx
2sec0secln −⋅ .  Two students did not know how to differentiate a 

composite function from a trigonometric function such as x
2tan− .  One 

of these two students wrote xsec−  as the derivative of x
2tan− .  The 

other wrote xx
222 sec)(sec− as the derivative of x

2tan− , and also 

wrote that the derivative of x
2sec is

2)tan(sec xx .  This error originated 

from the algebraic over-generalisation that if ba =  then
22

ba = .  

 

 

 

Interpretation Errors Displayed by Students  
Interpretation errors arise when students fail to interpret the nature of the 

problem correctly owing to over-generalisation of certain mathematical 

rules involved in the problem.  
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Table 2 shows an interpretation error and its description in an 

exponential logarithmic function 

Type of error  Description  

Interpretation 

error  

Students fail to interpret the nature of the problem 

correctly due to over-generalisation of certain 

mathematical rules.  For example, some students 

wrote that the derivative of xy
2sec=  is x

dx

dy
tan= .  

 

Two students could not remember the appropriate procedure to differentiate 
523 +

=
x

y
 
in )97ln(3 52

−=
+

xy
x

.  One student applied the power rule 

instead of the exponential rule.  He showed confusion in differentiation of 

the following functions, 
nx

xyay == ;  and the chain rule.  Another 

student applied logarithmic differentiation to differentiate 

)97ln(3 52
−=

+
xy

x
.  Figure 2 shows an example of the kind of 

interpretation error that the students displayed in the differentiation of the 

function )97ln(3 52
−=

+
xy

x
. 

 

 

Figure 2: An interpretation error displayed in differentiation  
 

Fourteen students fused two functions into one function in the 

differentiation of xexy
x

cos
323 +

= .  They treated 
323 +x

ex as the first 
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function and xcos  as the second function.  One student could not 

remember the derivative of xy
2sec=  and, as a result, she wrote that the 

derivative of xy
2sec=  is x

dx

dy
tan= .  This error originated from over-

generalisation of the symmetric property, which states that for any 

quantities a  andb , if ba = , then ab = .  This is not so in the case of 

derivatives.  

One student wrote that the derivative of xxy
222 sec)(sec−=

 
is

x
dx

dy 2tan−= and also wrote that the derivative of xy
2sec=

 
is 

2)tan(sec xx
dx

dy
= .  This originated from the algebraic over-

generalisation, such as if ba =  then 
22

ba = .  

 

 

Procedural Errors Displayed by Students 
Procedural errors occur when students fail to carry out manipulations or 

algorithms, although they understand concepts in the problem.  

 

Table 3 shows a procedural error and its description in an algebraic 

function 

Type of error Description 

Procedural error Procedural errors arise when students fail to carry out 

manipulations or algorithms, although they understand 

concepts in the problem.  For example, one student 

could not multiply )(secsec 232
xx− correctly. 

 

Ten students demonstrated difficulty in simplification of trigonometric 

functions.  One student could not apply the appropriate procedure in 

differentiation of
x

x
y

tan

sec 23

= .  He did not consider that he needed to apply 



Sibawu Witness Siyepu & Monwabisi K. Ralarala 
 

 

 

346 

the quotient rule.  Figure 3 below shows an example of a procedural error 

that the students displayed in the differentiation of a trigonometric function. 

 

 

 

 

Figure 3: A procedural error displayed in differentiation of a 

trigonometric function 
 

One student showed poor understanding of identities as he wrote 

θθ tancot = .  As a result, he substituted θcot with θtan .  One student 

failed to multiply radical trigonometric functions correctly.  He manipulated  

 

1

sin

cos2

1

cos

1 x

xx

−
⋅⋅ incorrectly.  As a result, he obtained 

x

x

cos

sin−

  

 

instead of
x

x

cos2

sin−
 .  One student failed to apply the LCD correctly in  

 

xexy
x

cos
323 +

= .  Two students differentiated exy ln32 += incorrectly.   

 

They did remember to apply the sum rule.  
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They also treated exy ln32 +=
 

as if it required the application of the 

product rule, treating 32 +x  as the first function and eln  as the second 

function.  They wrote that the derivative of ex ln)32( +
 
is eln2 .  

 

 

Linear Extrapolation Errors Displayed by the Students in the 

Three Tests 
Linear extrapolation errors happen through an over-generalisation of the 

property )()()( bfafbaf +=+ , which applies only when f is a linear 

function.  Linear extrapolation errors may be regarded as a subset of an 

interpretation error, as they occur due to poor interpretation of certain 

mathematical rules (Siyepu 2013b). 

 

Table 4 shows a linear extrapolation error and its description in an 

implicit function  

 

Type of error Description 

Linear 

extrapolation 

errors 

Linear extrapolation errors happen through an over-

generalisation of the property )()()( bfafbaf +=+ , 

which applies only when f is a linear function.  For 

example, one student calculated )ln( 22 yxyx +=+
 
as 

22 lnlnlnln yxyx +=+  

 

 

 

Five students demonstrated linear extrapolation error as they multiplied an 

algebraic expression by the symbol of a natural logarithm ln  and 

differentiated the expression by using the sum and difference rule.  Their 

error shows an over-generalisation of the distributed property as they treated 

the logarithmic function xln  as an ordinary variable.  Figure 4 below shows 

an example of a linear extrapolation error that the students displayed in the 

differentiation of an implicit function. 
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Figure 4: A linear extrapolation error displayed in implicit 

differentiation   

 

 

Arbitrary Errors Displayed by Students  
Arbitrary errors arise when students behave illogically and fail to take 

account of the constraints laid down in what is given.  

 

Table 5 shows an arbitrary error and its description in a trigonometric 

function 

Type of error Description 

Arbitrary error Arbitrary errors arise when students behave arbitrarily 

and fail to take account of the constraints laid down in 

what is given. For example, one student rewrote 

)5(cos 24 xy = as
42 )5cos( xy = .  
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Two students did not show any logic in their differentiation of

.cos.
323

xexy
x+

=
 

They did not apply logarithmic differentiation 

correctly to obtain xexy
x

coslnlnlnln
323

++=
+

.  Two students only 

transcribed the problem without any attempt to do calculations.  

Two other students transcribed the problem incorrectly and also showed 

illogical steps in their calculations of 
x

xey
2tan2sec −

= .  The first one 

transcribed the problem as 
x

xey
tan2sec −

=  instead of
x

xey
2tan2sec −

= .  

The second one transcribed the problem as 
x

xey
2tan2sec −

=
 
instead of 

x
xey

2tan2sec −
= .  One student left ex ln)32( +  without differentiating it.  

 

 

 

Students’ Responses as Reflected in the Audio and 

Video Recordings  
In the audio and video recordings, three students showed their solutions on 

a whiteboard, whilst representing their groups.  The students demonstrated 

errors that had already been identified in their written work.  The lecturer 

intervened by explaining appropriate procedures, describing concepts that 

had been interpreted incorrectly as the students were explaining their 

understanding of the derivatives of various functions.   

One student argued that her understanding was that logarithmic 

differentiation is applied only when the base of the function is in the form 

of a variable, and that the index is also a variable.  In the case of 

xexy
x

cos
323 +

= , all the terms are not in a transcendental form.  This 

student’s question indicated that she had confused the application of the 

chain rule with the application of the logarithmic differentiation rule.  This 

problem contains three functions whilst the students were familiar with 

differentiation of two functions (the latter makes it easy for them to apply 

the product rule).  

One student questioned why we do not apply the power rule to 

differentiate 
3ln xy = . His question might have been asked for purposes of 

clarity, or may show that he did not know the difference between the power 
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rule and logarithmic differentiation.  This question may thus symbolise 

poor conceptualisation.  

In response, the lecturer explained that, in the case of a natural 

logarithmic function, one does not apply the power rule.  In the 

explanation, the lecturer used examples of 
3

x  and 
3ln x , showing 

techniques of differentiating these two different functions.  He further 

explained that the first function 
3

x  requires the application of the power 

rule with its derivative equal to 
23x ; and that the second function 

3ln x

requires the application of logarithmic differentiation to obtain its  

derivative, which is equal to
xx

x

xf

xf 33

)(

)(
3

2

==
′

.  This intervention assisted  

 

the student working on audio and video recordings to rectify her mistake.  

The lecturer also intervened by correcting errors as he explained the 

appropriate procedure involved in cancelling trigonometric functions that 

fall under addition.  

One student raised a question, which reflected a conceptual error.  

He wanted to know whether it is appropriate to substitute x
2sec with xtan .  

This question showed that the student did not understand that, although the 

derivative of xy tan=
 
is x

dx

dy 2sec= , the derivative of x
2sec is not xtan  

The lecturer explained the appropriate procedure of obtaining the 

derivative of xy
2sec= .  One student suggested a further simplification of 

x
xexxxy

2tan22 sec]sectan2tan2[ −
−=′

 
to 

x
xexxy

2tan22 sec]sec1[tan2 −
−=′ .   

 

The lecturer explained that to remove a common factor would be 

an undesirable closure, as it is the opposite of simplification.  

A student requested the use of the product rule to differentiate this 

problem.  The same student attempted to address the problem by using the 

product rule in audio and video recorded observations.   The student 

showed that she had poor understanding of the standard derivatives.  
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Implications for Teaching and Learning  
This section deals with implications of this study in the light of a 

Commognitive framework.  The goal of any teaching is to develop 

understanding among the students in order to gain knowledge and insight on 

the topic being studied.  

 One student applied the power rule instead of exponential rule. In the 

case understudy the kind of change to occur as result of learning the students 

should be able to differentiate the differentiation problem that requires 

application of power rule and/or exponential function.  He showed confusion 

in differentiation of the following functions 
nx

xyay == ;  and the chain 

rule. A commognitive justification is that in order for the teacher and students 

to focus on the process to occur to work towards a change, emphasis should 

be done in classroom activities and discussions to explain clearly the 

difference between power rule and exponential rule.       

 In the context of this study, we could confidently argue that 

‘understanding’ has taken place, as Hiebert and Carpenter (1992:67) 

substantiate: 

 

A mathematical idea or procedure or fact is understood if it is part of 

an internal network. More specifically, the mathematics is 

understood if its mental representation is part of a network of 

representations.  The degree of understanding is determined by the 

number and the strength of the connections.  A mathematical idea, 

procedure, or fact is understood thoroughly if it is linked to existing 

networks with stronger or more numerous connections. 

 

Firstly, the students’ understanding of differentiation was determined by their 

ability to see the relationship of the concepts involved in the problem and 

apply appropriate procedures to obtain the solution.  This was achieved not 

only through engaging students with learning activities of a mathematical 

nature, but also through the aid of the more competent students, along with 

the lecturer guidance. 

Secondly, in terms of students who confused the product rule with 

the logarithmic rule, their solutions showed that they were not aware of xln  
as a natural logarithm; they assumed that xln was any other variable.  As a 

result, they could not apply properties of a natural logarithm; instead they 
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applied the product rule.  For these students, there seemed to be no difference 

between )2ln(sin +x
 

and )2(sin +xx .  This was also evident as the 

lecturer assigned the students with activities that elicited application of a 

natural logarithm ( xln ).  It stands to reason therefore that the concept of a 

natural logarithm and its properties should be further demystified for students 

to comprehend.  In addition, the difference between natural logarithmic 

functions and algebraic functions should be made explicit in the process of 

imparting knowledge. 

The kind of change in endorsement routines to occur as a result of 

learning is that students should be able to know the nature of differentiation 

problem that requires application of a product rule. Specifically, knowing that 

a product rule is applied when two or more functions are joined by a 

multiplication sign(s). A commognitive justification is that students should be 

able to know that logarithmic differentiation is appropriate in the case of 

functions such as  
x

xy =
  where the base is a variable as well as the 

exponent is also a variable.  

Thirdly, it has become clear in this study that the process of engaging 

students with learning activities, along with tapping their independent 

thinking to some degree, reinforced their understanding.  Their understanding 

became evident when they were assigned to solve mathematical problems 

independently.  This was further demonstrated not only by being able to 

identify interrelationships between the concepts and appropriate procedures, 

but also through displaying confidence and working independently 

throughout the activity, without requiring any form of assistance from the 

lecturer or from their more capable peers.  

Fourthly and finally, for the students who were not familiar with the 

differentiation of the function 
xay = where a  is a constant and x  is a 

variable, the lecturer designed learning activities that would capitalise these 

errors so that students would be in a position to realise their errors and 

misconceptions without the lecturer’s intervention.  As a result, they became 

independent in terms of their thinking, such that it did occur to them that the 

two functions 
nxy = and 

xay = are different.  It also transpired that these 

students could remember the restriction of the rule
1−

=
nnx

dx

dy
, that is n  is 
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strictly a constant.  At the same time, they were able to remember that the 

derivative of the function 
xay = is aa

dx

dy x ln= . 

A commognitive justification is that students should understand the 

words and their uses to solve any mathematical problem correctly.  Once 

students understand the use of appropriate rules and procedures then they will 

be able to master differentiation.  

 

 

Conclusion 
The results of this study suggest that lecturers should identify students’ errors 

in order to be able to design learning activities that may enhance students’ 

understanding of derivatives of various functions.  Errors displayed by 

students in this study mostly originated from their prior learning of 

mathematics and over-generalisation of certain mathematical rules.  The 

students’ prior learning had been dominated by rote learning of routines or 

procedures without their having made sense or meaning of these.  As a result, 

they tended to apply rules hastily.  

 The use of the Commognitive framework is a utility and, as such, it 

emphasises individual attention to obtain students’ explanations, discussions 

and elicit debates.  This is an important spinoff as it also provides a sense of 

how and why students perform to reach their full potential, and what form of 

assistance they require to be in a position to devise viable solutions to their 

assigned mathematical problems.  This, without doubt, requires investment in 

time and patience, if we are seriously concerned about enhancing the 

understanding and comprehension of students in as far mathematics is 

concerned, particularly when dealing with students enrolled in the Extended 

Curriculum Programme (ECP) and for whom English is an additional 

language. 
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